# Quantum Roaming in the complex forming mechanism of the reactions of $\mathbf{O H}$ with Formaldehyde and Methanol at low temperature and the effect of pressure 

Octavio Roncero<br>Instituto de Física Fundamental, CSIC<br>Serrano 123, 28006 Madrid (Spain)

The quantum dynamics of the title reactions is studied[1]using the ring polymer molecular dynamics (RPMD) method from 20 to 1200 K using full dimensional potential energy surfaces $[2,3]$ which include long-range dipole - dipole interactions. A V-shaped dependence of the reaction rate constants is found with a minimum at $200-300 \mathrm{~K}$, in rather good agreement with the current experimental data[4,5,6,7]. For temperatures above 300 K the reaction proceeds following a direct H -abstraction mechanism. However, below 100 K the reaction proceeds via organic-molecule $\cdots$ OH collision complexes, with very long lifetimes, longer than $10-7 \mathrm{~s}$, associated with quantum roaming arising from the inclusion of quantum effects by the use of RPMD. New results are obtained in a new Neural-Network PES recently proposed, increasing the accuracy of the fit and including the long-range interactions[8]. The same trapping mechanism is found [8], and it is associated to spurious RPMD resonances[9]. Thermostated RPMD method[9] has been applied and compared to previous RPMD results. Also, preliminary results on the reaction of OH with the $\left(\mathrm{H}_{2} \mathrm{CO}\right)_{2}$ dimer will be presented.

## References

[1] P. del Mazo-Sevillano, A. Aguado, E. Jiménez, Y. V. Suleimanov, O. Roncero, J. Phys. Chem. Lett. 10,1900 (2019)
[2] A. Zanchet, et al. PCCP 20, 5415 (2018)
[3] O. Roncero, A. Zanchet and A. Aguado, PCCP 20, 25951 (2018)
[4] A. J. Ocaña, et al. AstroPhys. J. 850, 28 (2017)
[5] R.J. Shannon, M. A. Blitz, A Goddard, D. E. Heard, Nat. Chem. 5, 750 (2013)
[6] M. Antiñolo et al., AstroPhys. J. 823, 25 (2016)
[7] A. J. Ocaña et al. PCCP 21, 6942 (2019)
[8] P. del Mazo-Sevillano, A. Aguado, O. Roncero, J. Chem. Phys, 154, 094305 (2021)
[9] M. Rossi, M. Ceriotti, D. E. Manolopoulos, J. Chem. Phys., 140, 234116 (2014).

